Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(4): 119, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429532

RESUMEN

Soil bacteria-fungi interactions are essential in the biogeochemical cycles of several nutrients, making these microbes major players in agroecosystems. While the impact of the farming system on microbial community composition has been extensively reported in the literature, whether sustainable farming approaches can promote associations between bacteria and fungi is still unclear. To study this, we employed 16S, ITS, and 18S DNA sequencing to uncover how microbial interactions were affected by conventional and organic farming systems on maize crops. The Bray-Curtis index revealed that bacterial, fungal, and arbuscular mycorrhizal fungi communities were significantly different between the two farming systems. Several taxa known to thrive in healthy soils, such as Nitrosophaerales, Orbiliales, and Glomus were more abundant in the organic farming system. Constrained ordination revealed that the organic farming system microbial community was significantly correlated with the ß-glucosidase activity, whereas the conventional farming system microbial community significantly correlated with soil pH. Both conventional and organic co-occurrence interkingdom networks exhibited a parallel node count, however, the former had a higher number of edges, thus being denser than the latter. Despite the similar amount of fungal nodes in the co-occurrence networks, the organic farming system co-occurrence network exhibited more than 3-fold the proportion of fungal taxa as keystone nodes than the conventional co-occurrence network. The genera Bionectria, Cercophora, Geastrum, Penicillium, Preussia, Metarhizium, Myceliophthora, and Rhizophlyctis were among the fungal keystone nodes of the organic farming system network. Altogether, our results uncover that beyond differences in microbial community composition between the two farming systems, fungal keystone nodes are far more relevant in the organic farming system, thus suggesting that bacteria-fungi interactions are more frequent in organic farming systems, promoting a more functional microbial community.


Asunto(s)
Ascomicetos , Micorrizas , Agricultura Orgánica , Micorrizas/genética , Agricultura , Suelo/química , Bacterias/genética
2.
Braz J Microbiol ; 54(3): 1955-1967, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37410249

RESUMEN

Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.


Asunto(s)
Glomeromycota , Micorrizas , Micorrizas/genética , Brasil , Rizosfera , Poaceae , Microbiología del Suelo , Hongos , Bosques , Plantas , Raíces de Plantas/microbiología
3.
Microbiol Res ; 271: 127352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907073

RESUMEN

Climate change has caused irregularities in water distribution, which affect the soil drying-wetting cycle and the development of economically important agricultural crops. Therefore, the use of plant growth-promoting bacteria (PGPB) emerges as an efficient strategy to mitigate negative impacts on crop yield. We hypothesized that the use of PGPB (in consortium or not) had potential to promote maize (Zea mays L.) growth under a soil moisture gradient in both non-sterile and sterile soils. Thirty PGPB strains were characterized for direct plant growth-promotion and drought tolerance induction mechanisms and were used in two independent experiments. Four soil water contents were used to simulate a severe drought (30% of field capacity [FC]), moderate drought (50% of FC), no drought (80% of FC) and, finally, a water gradient comprising the three mentioned soil water contents (80%, 50%, and 30% of FC). Two bacteria strains (BS28-7 Arthrobacter sp. and BS43 Streptomyces alboflavus), in addition to three consortia (BC2, BC4 and BCV) stood out in maize growth performance in experiment 1 and were used in experiment 2. Overall, under moderate drought, inoculation with BS43 surpassed the control treatment in root dry mass and nutrient uptake. Considering the water gradient treatment (80-50-30% of FC), the greatest total biomass was found in the uninoculated treatment when compared to BS28-7, BC2, and BCV. The greatest development of Z. mays L. was only observed under constant water stress conditions in the presence of PGPB. This is the first report that demonstrated the negative effect of individual inoculation of Arthrobacter sp. and the consortium of this strain with Streptomyces alboflavus on the growth of Z. mays L. based on a soil moisture gradient; however, future studies are needed for further validation.


Asunto(s)
Suelo , Streptomyces , Zea mays/microbiología , Raíces de Plantas/microbiología
4.
Microb Ecol ; 86(1): 563-574, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35932316

RESUMEN

The genus Herbaspirillum gained the spotlight due to the several reports of diazotrophic strains and promising results in plant-growth field assays. However, as diversity exploration of Herbaspirillum species gained momentum, it became clearer that the plant beneficial lifestyle was not the only form of ecological interaction in this genus, due to reports of phytopathogenesis and nosocomial infections. Here we performed a deep search across all publicly available Herbaspirillum genomes. Using a robust core genome phylogeny, we have found that all described species are well delineated, being the only exception H. aquaticum and H. huttiense clade. We also uncovered that the nif genes are only highly prevalent in H. rubrisubalbicans; however, irrespective to the species, all nif genes share the same gene arrangement with high protein identity, and are present in only two main types, in inverted strands. By means of a NifHDKENB phylogenetic tree, we have further revealed that the Herbaspirillum nif sequences may have been acquired from the same last common ancestor belonging to the Nitrosomonadales order.


Asunto(s)
Herbaspirillum , Herbaspirillum/genética , Herbaspirillum/metabolismo , Fijación del Nitrógeno/genética , Filogenia , Genómica
5.
Microb Ecol ; 84(2): 539-555, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34498120

RESUMEN

Soil bacterial and fungal communities are suitable soil ecosystem health indicators due to their sensitivity to management practices and their role in soil ecosystem processes. Here, information on composition and functions of bacterial and fungal communities were evaluated at two phenological stages of sugarcane (six and twelve months, equivalent to the most intensive vegetative stage and to final maturation, respectively) when organomineral fertilizer, combined with phosphate-solubilizing bacteria (PSB), was added into the soil. Organic compost enriched with apatite (C + A) or phosphorite (C + P) and compost without phosphate enrichment (C) were used in the presence or absence of PSB. In addition, we used a control fertilized with soluble triple superphosphate. The differences were more related to the sampling period than to the type of organomineral fertilizer, being observed higher available phosphorus at six months than at twelve months. Only in the C treatment we observed the presence of Bacillaceae and Planococcaceae, while Pseudomonadaceae were only prevalent in inoculated C + A. As for fungi, the genera Chaetomium and Achroiostachys were only present in inoculated C + P, while the genus Naganishia was most evident in inoculated C + A and in uninoculated C + P. Soliccocozyma represented 75% of the total fungal abundance in uninoculated C while in inoculated C, it represented 45%. The bacterial community was more related to the degradation of easily decomposable organic compounds, while the fungal community was more related to degradation of complex organic compounds. Although the microbial community showed a resilient trait, subtle changes were detected in microbial community composition and function, and this may be related to the increase in yield observed.


Asunto(s)
Microbiota , Saccharum , Bacterias , Fertilizantes/análisis , Fosfatos , Suelo , Microbiología del Suelo
6.
Genomics ; 113(6): 3523-3532, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34400240

RESUMEN

Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.


Asunto(s)
Serratia marcescens , beta-Lactamasas , Antibacterianos , Humanos , Plásmidos/genética , Serratia marcescens/genética , Secuenciación Completa del Genoma , beta-Lactamasas/genética
7.
Parasitol Res ; 117(1): 213-223, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29192336

RESUMEN

This study was conducted to identify the Sarcocystis species that infect the opossum Didelphis aurita in order to determine which sporocysts they are excreating in to the environment and help determine the role of D. aurita in the epidemiology of Sarcocystis. Sporocysts were obtained from intestinal tracts of 8 of 13 D. aurita trapped in Rio de Janeiro state, Brazil, and were orally inoculated into Melopsittacus undulatus and Balb/c nude Mus musculus. Portions of organs and muscles were processed for histology, immunohistochemistry, transmission electron microscopy (TEM), and PCR using primers JNB 33/54, and ITS. Amplification products were subjected to RFLP using DraI and HinfI. Some birds were euthanized 6, 7, 13, 16, and 24 days after inoculation (DAI). All other birds and all mice were euthanized 60 DAI. Schizonts were observed in the lungs using histology and immunostaining in birds examined prior to 60 DAI. Sarcocysts with a ~ 1.5-µm-thick wall were found in the breast, thigh, and tongue of some birds. Sarcocystis asexual stages were isolated in cell cultures inoculated with sporozoites. Parasite DNA isolated from bird tissues and cell cultures demonstrated that S. falcatula-like parasites were present in all samples derived from positive opossums. Asexual stages molecularly characterized as S. lindsayi-like were isolated in cell culture from one opossum with an apparent multiple infection. This study demonstrated that D. aurita is a definitive host for S. falcatula-like parasites and indicates that S. lindsayi-like parasites can be found in coinfections of this opossum species.


Asunto(s)
Didelphis/parasitología , Sarcocystis/aislamiento & purificación , Sarcocistosis/veterinaria , Animales , Brasil/epidemiología , Línea Celular , Chlorocebus aethiops , Femenino , Interacciones Huésped-Parásitos , Intestinos/parasitología , Intestinos/patología , Masculino , Melopsittacus/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Transmisión , Músculos/parasitología , Músculos/patología , Oocistos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Sarcocystis/clasificación , Sarcocystis/genética , Sarcocystis/ultraestructura , Sarcocistosis/epidemiología , Sarcocistosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...